HOP - VHS Calibration Exciter Very-High-g-Shock

Applications

- Secondary calibration of shock transducers as well as complete measuring instruments in form of a measuring chain, with very high precision and efficiency, according to ISO 16063-22 (calibration by the comparison method)
- Secondary calibration of shock accelerometer reference standards
- Shock Testing of small assemblies / parts

Range of Use

- Accredited calibration laboratories
- Departments of **measuring instrument verification** in research and development particular in the aviation and space travel or in the military industry
- Quality assurance in sensor manufacturing
- National metrology laboratories as highest measurement authorities

Features

- Type of excitation: sinusoidal shock
- Shock amplitudes up to 200.000 gn
- Excellent repeatability of shock
- Position of DUT: horizontal
- Sensor mass (DUT) up to 15 gram
- Realization of all automatic calibrations according to own test regime (up to 20 shocks/ minute)

HOP - VHS Shock Exciter Very-High-g-Shock

The SPEKTRA HOP-VHS High-g shock exciter is determined for testing and calibrating acceleration sensors. It is specified to provide sinusoidal one period shock excitations. The HOP-VHS works according to the Hopkinson-bar principle. It makes use of the propagation and reflection characteristics of a mechanical wave in a slender bar. The HOP-VHS consists of a shock exciter barrel and a Hopkinson-bar made of Titanium. Both are mounted on an aluminum beam. Within the barrel a projectile is accelerated pneumatically, hitting the end of the bar in an adjustable distance thus exciting the strain pulse within the bar. A pneumatic control allows to retract the projectile after each shot by applying a negative pressure. While the air pressure is kept constantly, the kinetic energy of the projectile can be controlled by a motor driven mechanical stop that allows a precise adjustment of the projectiles starting position and thus of the distance over which it is accelerated. Thus the HOP-VHS allows a good and all electric control of the shock amplitude. All mechanical parts are build from wear resistant materials allowing best stability of the shock exciter and providing a good repeatability of shocks.

Components

- Pneumatically driven pulse generator
- Reference standard strain gauge BN-19
- Control box with 5V TTL and serial (RS232) I/Ointerface

Performance Specification¹⁾

Shock Acceleration	10,000 g _n 200,000 g _n
Pulse Width PWFS / PWHS ²⁾	typical 40 μs / 20 μs
Sensor Mass (DUT)	max. 15 gram

 $^{1)}\,$ All data for environmental conditions: temperature 23°C (± 2°C) and relative humidity 30 % ... 75 %

²⁾ PWHS = Pulse Width Half Sine Wave; PWFS = Pulse Width Full Sine Wave

³⁾ Determined according to GUM (ISO Guide to the expression of uncertainty in measurement, 1995) with k = 2 (coverage factor)

Air Supply		4 bar
Dimensions Hopkinson Bar	Length	approx. 3.5 m
	Height	0.8 m 1.2 m
	Width	approx. 1 m