

CS Q-LEAP[™] GYRO with DRE-01 calibration system with dynamic rotation exciter

	\sim Typical DUTs	
HERO [™] vibration controller incl. signal conditioners	 gyro transducers (angular velocity) Inertial Measurement Units (IMU) rotation rate measuring systems 	
CS Q-LEAP [™] software • sine calibration • vibration measurement • vibration generation • more on demand	* DUT = Device Under Test Standards • ISO 17025: General requirements for the competence of testing and	
DRE-01 dynamic rotation exciter with internal reference standard BN-43, APS 0109 zero position controller and power amplifier PA 500 DM	calibration laboratories	

🛧 Key features

-\\\	Calibration system for dynamic angular velocity in the frequency range 1 Hz \dots 200 Hz
	Traceable to PTB (German National Metrology Laboratory)
-6-1	Calibration of angular velocity sensors and measurement systems
	Integrated sensor database
	Integrated software for the generation of calibration certificates (print, PDF,) Easy data exchange with applications like ERP systems or measuring equipment databases

🕄 Technical data

Torque, max. (sine peak) ¹⁾	0.95 Nm			
Frequency range ²⁾	1 Hz200 Hz - traceable range for calibration > 200 Hz5 kHz - extended range for testing purposes			
Angle, max. (peak - peak) ³⁾	30°			
Angular velocity, max. (sine peak) ¹⁾	5 300 °/s			
Angular acceleration, max. (sine peak) $^{1)}$	2 500 000 °/s²			
Mass moment of inertia of bare table	22 kg · mm²			
Mass moment of inertia of payload, max.	400 kg · mm²			
Payload, max.	0.5 kg			
Centrifugal force due to unbalance, max.	1.5 N			

Frequency range			Expanded	Excitation amplitude (Peak value)	
from	to	Weight of DUT	measurement uncertainty ⁴⁾ magnitude ⁵⁾ / phase ⁶⁾	min.	max. ⁷⁾ (Angle, rate of rotation, angular acceleration)
1 Hz	200 Hz	up to 200 g	1.5 % / 1.5°	1.0°/s	Rotation angle: 30° Angular velocity: 5300°/s Angular acceleration: 2.5 E ⁶ °/s ²

All specifications are at a temperature of +23 $^{\circ}$ C (±2 $^{\circ}$ C) and a relative humidity of 30 %...75 % unless otherwise specified. 1) Intervals of 5 minutes

2) Frequency range without mounting table

Frequency range with mounting: 1 Hz...4.5 kHz; with internal reference standard: 1 Hz...2 kHz

3) Recommended operation range peak-peak; mechanical stops at 40° peak-peak

4) Determined in accordance with GUM (ISO Guide to the Expression of Uncertainty in Measurement, 1995) with k = 2 (coverage factor) for an ideal test object (additional allowances will need to be estimated for other, non-ideal test objects)

5) Data applicable to electric sensor signals \geq (1 mV or 1 pC)

6) Data only valid in conjunction with the PHASE option

7) Maximum excitation without test object