CS18 VLF

Calibration System Very-Low-Frequency

Application

- Secondary calibration according to ISO 16063-21 (comparison method) of charge type, ICP[®], voltage, capacitive and piezo-resistive sensors for acceleration, velocity and distance, with Sine excitation with high accuracy
- Secondary calibration of **reference standards**
- Resonant frequency search from 10 to 200 Hz
- · Calibration of vibration meters
- Calibration of vibration calibrators
- · Calibration of seismic sensors

Range of Use

- Certified calibration laboratories
- Departments for the supervision of measuring instruments in research and industries (automotive, aviation, space, military)
- Quality assurance in sensor production
- National metrology laboratories, with optional extra 'Primus' as a CS18P VLF primary calibration system)

Features

- Traceable to Physikalisch Technische Bundes-anstalt (PTB) Braunschweig by the SPEKTRA Calibration Laboratory D-K-15183-01-00 (DAkkS Calibration Certificate)
- Calibration of sensors with / without amplifiers, measurement instruments with indication of their own by applying of determinate acceleration signals
- Calibration of calibrators by exact measurement of vibration quantities
- Frequency range 0.2 Hz ... 160 Hz, optional frequency range 0.1 Hz ... 160 Hz
- Sensor mass (DUT) up to 900 gram, at horizontal / vertical excitation, optional 3 kilogram
- Air-bearing long stroke vibration exciter with electrical zero-positioning-controller (vibration displacement 100 mm)
- Repeatability under identical conditions less to 63 Hz < 0.1 %, otherwise less than 0.5 %
- **Upgradeable** to a combined Sine calibration system, e.g. type CS18 VLF / HF, CS18P VLF

CS18 VLF

Calibration System Very-Low-Frequency

Components

- Vibration control system SRS-35, SPEKTRA with electronic zero position controller APS 0109
- Software CS18 VLF with operation modes: sensor calibration, measurement, supply, sweep
- Power amplifier APS 125
- · Air-bearing long-stroke vibration exciter APS 113-AB for up to 100 mm vibration displacement
- Electronic zero position control APS 0109
- Vertical Mounting Kit for vertical excitation
- Horizontal excitation on foundation (foundation not supplied)
- Reference standard accelerometer BN-07 or BN-21
- . Single-ended reference standard for the calibration of calibrators
- Standard PC

Specification CS18 VLF with air bearing vibration exciter APS 113-AB in the frequency range 0.2 Hz ... 160 Hz for sensor mass up to 900 gram (DUT)

for environmental conditions: temperature 23°C (± 2°C) and relative humidity 30 % ... 75 %

Frequency Range		Sensor Mass DUT	Expanded Measurement	Working Range (peak value)		
from	to	horizontal / vertical	Uncertainty ²⁾ Amount ³⁾ / Phase ¹⁾	Minimum	Maximum ⁴⁾ (Displacement, Velocity, Acceleration)	Maximum ⁵⁾ (Displacement, Velocity, Acceleration)
0.2 Hz	< 0.4 Hz	900 gram	1.5 % / 1.5°	0.2 Hz 1.0 Hz: 0.04 m/s² 1.0 Hz 160 Hz:	0.2 Hz 1.25 Hz: 50 mm	0.2 Hz 1.25 Hz: 50 mm
0.4 Hz	< 1 Hz		1.0 % / 1.5°		1.25 Hz 8.0 Hz:	1.25 Hz 8.0 Hz:
1 Hz	63 Hz		0.5 % / 0.7°		0.4 m/s	0.4 m/s
> 63 Hz	160 Hz		1.0 % / 1.0°		8 Hz 63 Hz:	8 Hz 63 Hz:
Reference- Frequency 8 Hz, 16 Hz			0.5 % / 0.7°	0.1 m/s²	10 m/s ² 63 Hz 160 Hz: 5 m/s ²	20 m/s ² 63 Hz 160 Hz: 10 m/s ²

¹⁾ Only in combination with optional extra PHASE

Options for calibration systems CS18 VLF:

-EF Extended frequency range from 0.1 Hz

-HL High Masses horizontally up to 5 kg and vertically up to 3 kg

with the additional vibration exciter APS 129; e.g. for calibration of seismometers and geophones

-TABLE granite plate on block of sandstone to mount and use the system properly

All data are subject to change without notice

²⁾ Determined according to GUM (ISO Guide to the expression of uncertainty in measurement, 1995) with k = 2 (coverage factor) for the best possible DUT (other devices that are not as ideal have to be evaluated with individual additions)

 $^{^{3)}}$ Values only valid for electrical sensor signals \geq (1 mV or 1 pC)

⁴⁾ Maximum acceleration for maximum payload (DUT); higher excitations possible according to datasheet APS 113-AB

⁵⁾ Maximum acceleration without any payload (DUT); higher excitations possible according to datasheet APS 113-AB