CS18 MS

Calibration System Medium-Shock Secondary

Applications

- Secondary calibration of shock transducers as well as complete measuring instruments (measuring chain) with very high precision and efficiency, according to ISO 16063-22 (calibration by the comparison method)
- Secondary calibration of shock accelerometer reference standards

Range of Use

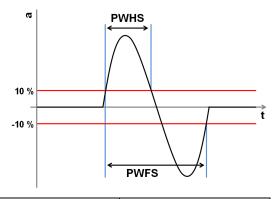
- Accredited calibration laboratories
- Calibration laboratory departments of industrial firms particular in automotive, aviation or space travel industry
- Quality assurance in sensor manufacturing
- National metrology laboratories as highest measurement authorities (with upgrade to primary system)

Features

- Traceable to Physikalisch Technische Bundesanstalt (PTB) Braunschweig by the accredited SPEKTRA Calibration-Laboratory D-K-15183-01-00
- Broad amplitude range from 20 g_n ... 4.000 g_n
- Type of excitation: sinusoidal shock, adjustable signal shape or burst
- Independent control of amplitude and pulse width (within certain ranges, see table)
- Excellent repeatability of shock
- Position of DUT: horizontal
- Sensor mass (DUT) up to 30 gram
- Realization of fully automatic calibrations according to own test regime (up to 1 shock/s)
- Calibration of sensors with / without measuring amplifier and measuring systems (sensor with signal conditioner)
- Direct connection of piezo-resistive sensors through integrated PR signal conditioner
- Determination of aptitude for calibration (bridge resistance, offset, drift) of PR sensors in conjunction with software option PR measurement
- Upgradeable to a combined calibration system e.g. CS18 MS / HF

CS18 MS

SDEKT

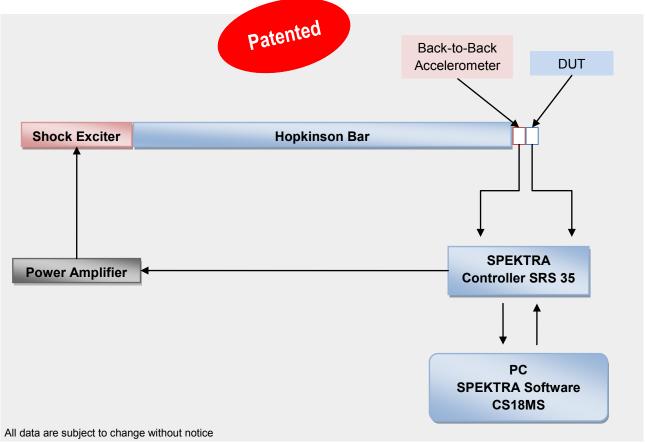

Calibration System Medium-Shock Secondary

Components

- Vibration control system SRS-35 by SPEKTRA with integrated PR signal conditioner
- Shock exciter SE-220 HOP-MS
- Reference standard BN-02
- PA 14-500 power amplifier

Performance Specification 1)

Max. sensor mass (DUT): 30 gram Min. shock amplitude: $20 g_n$



Shock Amplitude	PWHS 2)	PWFS 2)	Uncertainty 3)
20 g _n 250 g _n	180 µs	360 µs	< 2.0 %
20 g _n 500 g _n	125 µs	250 µs	< 2.0 %
20 g _n 1,000 g _n	70 µs	140 µs	< 2.5 %
20 g _n 4,000 g _n	40 µs	80 µs	< 3.0 %

 $^{^{1)}\,}$ All data for environmental conditions: temperature 23°C (± 2°C) and relative humidity 30 % ... 75 %

³⁾ Determined according to GUM (ISO Guide to the expression of uncertainty in measurement, 1995) with k = 2 (coverage factor)

Dimensions Hopkinson Bar	Length	approx. 2.5 m
	Height	approx. 1.3 m
	Width	approx. 0.5 m

November 2013

²⁾ PWHS = max. Pulse Width Half Sine Wave; max. PWFS = Pulse Width Full Sine Wave