CS18P VLF

Primary Calibration System Very-Low-Frequency

Applications

- Primary calibration of vibration sensors, calibrators and measurement systems with very high quality and performance according to ISO 16063-11 (Primary Calibration, method 3)
- Primary calibration of laser vibrometers and reference laser vibrometers performance to ISO 16063-41
- Primary calibration of reference standards
- Resonant frequency search from 10 to 200 Hz
- · Calibration of vibration meters
- Calibration of vibration calibrators
- Calibration of seismic sensors

Range of Use

- National metrology laboratories as highest measurement authorities
- Authorized calibration laboratories (such as DAkkS-Labs in Germany)
- Departments for the **supervision of measuring** instruments in research and industries
- Quality assurance in sensor production

Features

- Traceable to Physikalisch Technische Bundesanstalt (PTB) Braunschweig by the accredited SPEKTRA Calibration Laboratory D-K-15183-01-00 (DAkkS Calibration Certificate), NIST (MRA) ...
- Calibration of sensors with / without amplifiers, of measurement instruments with indication of their own by applying determinate acceleration signals
- Calibration of calibrators by exact measurement of definite vibration quantities
- Air-bearing long stroke exciter with electronic zero position control unit for full 100 mm peak to peak stroke application
- Frequency range 0.2 Hz ... 160 Hz,
 Option -EF: starting from 0.1 Hz
- Sensor mass up to 900 gram
 Option -HL: 5 kg horizontal / 3 kg vertical
- All digital laser vibrometer as primary reference standard
- Additionally applicable for secondary calibrations according to ISO 16063-21 by using integrated secondary reference standard
- Upgradeable to calibration systems, e.g. type CS18P VLF / HF

CS18P VLF

SPEKTRA

Primary Calibration System Very-Low-Frequency

Components

- Precision measuring and control system SRS-35, SPEKTRA
- Software CS18P VLF with operation modes: sensor calibration, measurement, supply, sweep
- Electronic zero position controller APS 0109
- Power amplifier APS 125
- Air bearing long-stroke vibration exciter APS 113AB for up to 100 mm vibration displacement
- Vertical Mounting Kit for vertical excitation
- Digital laser vibrometer PLV-01 as primary reference standard
- Prism for the calibration of laser vibrometers
- Vibration isolation VI-02 for vibrometer PLV-02

Specifications of CS18P VLF (Primary System) at 23°C (± 2°C) and relative humidity 30 % ... 75 %

Frequency Range		Sensor Mass DUT	Expanded Measurement Uncertainty 2)		Working Range (peak value)			
from	to	horizontal / vertical up to	Amount ³⁾ / Phase ¹⁾ Sensors and Laser Vibrometers with analog Signal Output	Amount Reference Laser Vibrometer	Minimum	Maximum ⁴⁾ (Displacement, Velocity, Acceleration)	Maximum ⁵⁾ (Displacement, Velocity, Acceleration)	
0.2 Hz	< 0.4 Hz	900 gram	0.7 % / 0.7°	0.25 %		0.2 Hz 1.25 Hz: 50 mm	0.2 Hz 1.25 Hz: 50 mm	
0.4 Hz	< 1 Hz		0.5 % / 0.5°		0.2 Hz 1.0 Hz: 0.04 m/s ² 1.0 Hz 160 Hz: 0.1 m/s ²			
1 Hz	63 Hz		0.3 % / 0.5°			1.25 Hz 8.0 Hz: 0.4 m/s	1.25 Hz 8.0 Hz: 0,4 m/s	
> 63 Hz	160 Hz		0.7 % / 0.7°			8 Hz 63 Hz:	8 Hz 63 Hz:	
	requency , 16 Hz		0.3 % / 0.5°			20 m/s ² 63 Hz 160 Hz: 10 m/s ²	20 m/s ² 63 Hz 160 Hz: 10 m/s ²	

Specifications of CS18P VLF (Secondary System)

0.2 Hz	< 0.4 Hz		1.5 % / 1.5°	0.2 Hz 1.0 Hz: 0.04 m/s ²	0.2 Hz 1.25 Hz:	
0.4 Hz	< 1 Hz		1.0 % / 1.5°		50 mm	50 mm
1 Hz	63 Hz		0.5 % / 0.7°		1.25 Hz 8.0 Hz: 0.4 m/s	1.25 Hz 8.0 Hz: 0.4 m/s
> 63 Hz	160 Hz		1.0 % / 1.0°			
Ref. Frequency 8 Hz, 16 Hz		3	0.5 % / 0.7°	1.0 Hz 160 Hz: 0.1 m/s²	8 Hz 63 Hz: 20 m/s ² 63 Hz 160 Hz: 10 m/s ²	8 Hz 63 Hz: 20 m/s ² 63 Hz 160 Hz: 10 m/s ²

¹⁾ Only in combination with optional extra PHASE

Options for calibration systems

-EF extended frequency range starting from 0,1 Hz

-HL higher payloads up to 5 kg in horizontal and 3 kg in vertical direction by means of an additional vibration exciter type APS 129 (SE-06).

E.g. for calibration of seismometers or geophones

-TABLE block made of sand stone for proper installation and use of the system

All data are subject to change without notice

October 2014

²⁾ Determined according to GUM (ISO Guide to the expression of uncertainty in measurement) with k = 2 (coverage factor)

³⁾ Valid for electrical sensor signals ≥ (1 mV or 1 pC)

⁴⁾ Maximum acceleration for maximum payload (DUT)

⁵⁾ Maximum acceleration without any payload (DUT)