CS18P MS

Primary Calibration System Medium-Shock

Applications

- Primary calibration of shock transducers as well as complete measuring instruments (measuring chain) with very high precision and efficiency, according to ISO 16063-13
- Primary calibration of shock accelerometer reference standards

Typical Users

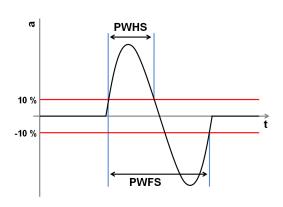
- National metrology laboratories as highest measurement authorities
- Accredited calibration laboratories
- Calibration laboratory departments of industrial companies particular in automotive, aviation or space travel industry
- Quality assurance in sensor manufacturing

Features

- Traceable to Physikalisch Technische Bundesanstalt (PTB) Braunschweig by the accredited SPEKTRA Calibration-Laboratory D-K-15183-01-00
- Broad amplitude range from
 2 g_n ... 5,000 g_n
- Type of excitation: sinusoidal shock, adjustable signal shape or burst
- **Independent control** of amplitude and pulse width (within certain ranges, see table)
- Excellent repeatability of shock
- Sensor mass (DUT) up to 30 gram
- Realization of fully automatic calibrations according to own test regime (up to 1 shock/s)
- Calibration of sensors with / without measuring amplifier and measuring systems
- Direct connection of piezo-resistive sensors through integrated PR signal conditioner
- Determination of aptitude for calibration (bridge resistance, offset, drift) of PR sensors in conjunction with software option PR measurement
- Integration of a reference standard for secondary calibration according to ISO 16063-22
- Upgradeable to a combined calibration system e.g. CS18P MS / HF

CS18P MS

SPEKTRA

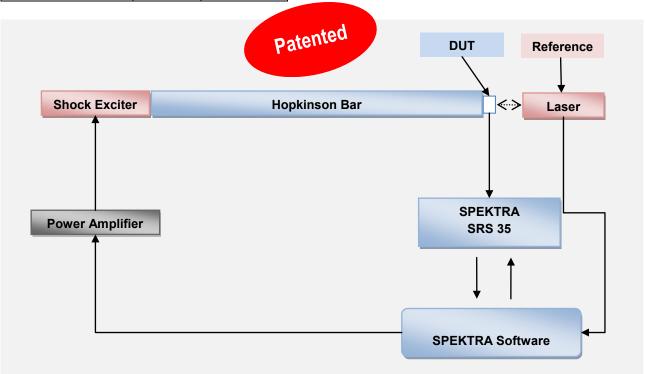

Primary Calibration System Medium-Shock

Components

- Vibration control system SRS-35 by SPEKTRA with integrated PR signal conditioner
- Shock exciter SE-220 HOP-MS
- Reference standard laser vibrometer PLV-02
- Reference standard BN-02 for secondary calibration
- High speed Data Acquisition System
- PA 14-500 power amplifier

Performance Specification Primary 1)

Max. sensor mass (DUT): 30 gram Min. shock amplitude: $2 g_n$



Shock Amplitude	Max. PWHS 2)	Max. PWFS 2)	Uncertainty 3)
2 g _n 20 g _n	200 μs	400 µs	< 3 %
20 g _n 250 g _n	200 μs	400 µs	< 1,5 %
20 g _n 550 g _n	125 µs	250 µs	< 1,5 %
20 g _n 1,000 g _n	100 µs	200 µs	< 1,5 %
20 g _n 4,000 g _n	60 µs	120 µs	< 2 %
20 g _n 5,000 g _n	40 µs	80 µs	< 2,5 %

 $^{^{1)}}$ All data for environmental conditions: temperature 23°C (± 2°C) and relative humidity 30 % ... 75 %

Dimensions
Hopkinson Bar

Length approx. 2,5 m
Height approx. 1,3 m
Width approx. 0,5 m

All data are subject to change without notice

November 2013

²⁾ PWHS = Pulse Width Half Sine Wave; PWFS = Pulse Width Full Sine Wave

³⁾ Determined according to GUM (ISO Guide to the expression of uncertainty in measurement, 1995) with k = 2 (coverage factor)